
Deep Reinforcement Learning-based 

Exploration of Web Applications 
 

Mohammadreza Abbasnezhad  

Department of Computer 

Engineering 

Yazd University 

Yazd, Iran. 

abbasnezhad.m.r@stu.yazd.ac.ir 

 

 

Amir Jahangard Rafsanjani  

Department of Computer 

Engineering 

Yazd University 

Yazd, Iran. 

jahangard@yazd.ac.ir 

 

 

Amin Milani Fard  

Department of Computer Science 

New York Inst. of Technology 

Vancouver, BC, Canada. 

amilanif@nyit.edu 

 

 

Received: 15 May 2023 – Revised: 16 November 2023 - Accepted: 13 March 2024 

 
Abstract—Web application (app) exploration is a crucial part of various analysis and testing techniques. However, the 

current methods are not able to properly explore the state space of web apps. As a result, techniques must be developed 

to guide the exploration in order to get acceptable functionality coverage for web apps. Reinforcement Learning (RL) 

is a machine learning method in which the best way to do a task is learned through trial and error, with the help of 

positive or negative rewards, instead of direct supervision. Deep RL is a recent expansion of RL that makes use of neural 

networks’ learning capabilities. This feature makes Deep RL suitable for exploring the complex state space of web apps. 

However, current methods provide fundamental RL. In this research, we offer DeepEx, a Deep RL-based exploration 

strategy for systematically exploring web apps. Empirically evaluated on seven open-source web apps, DeepEx 

demonstrated a 17% improvement in code coverage and a 16% enhancement in navigational diversity over the state-

of-the-art RL-based method. Additionally, it showed a 19% increase in structural diversity. These results confirm the 

superiority of Deep RL over traditional RL methods in web app exploration.  

Keywords: Deep Reinforcement Learning, Exploration, Model Generation, Web Application. 

Article type: Research Article 

© The Author(s). 

Publisher: ICT Research Institute 

 

I. INTRODUCTION 

Web applications (apps) are an important part of our 
daily lives because they help us in many ways. A recent 
survey [1] found that there are over 1 billion web apps. 
Web apps are developed using various technologies and 
multiple programming languages, such as JavaScript, 
HTML, CSS, and PHP. In an event-driven architecture, 
the structure of the web apps changes in response to 
events, such as clicks. In other words, web apps 
frequently use JavaScript to modify the Document 

 
 Corresponding Author 

Object Model (DOM) [2] dynamically. That gives web 
apps different states and gives users better response and 
interaction. 

Numerous web app analysis, understanding, and 
testing methods rely on automated black-box 
exploration of web apps [3]–[8]. Exploration of web 
apps can reduce the complexities associated with 
analyzing the complex source code of web apps. In 
other words, the exploration methodologies exercise the 
User Interface (UI) elements to explore the state space 
of a web app. To create a behavior model of the web 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

                               1 / 9

https://orcid.org/0009-0008-8929-6552
https://orcid.org/0000-0003-2638-5722
https://orcid.org/0000-0003-0816-0597
https://journal.itrc.ac.ir/article-1-604-en.html


app, events are triggered on web elements 
automatically, and possible UI state changes are tracked 
during exploration. This inferred model, represented by 
a State Flow Graph (SFG) [9], is subsequently utilized 
for a variety of purposes. The efficacy of web app 
analysis and testing activities is highly dependent on the 
efficacy of the SFG developed during web app 
exploration. 

To adequately cover its state space [10], there are 
many web app exploration methodologies. The goal of 
generic exploration methods, like Crawljax [9], is to 
fully explore the state space of a web app. The state 
explosion problem [11] is a drawback to exhaustive 
exploration. In reality, the majority of web apps have 
such a vast state space that exhaustive exploration is 
impossible. In addition, generic techniques have a 
tendency to become mired in unimportant parts of web 
apps, which leads to inadequate coverage of the app’s 
functionality because there is no feedback to direct the 
exploration. 

Guided exploration is an alternative to generic 
exploration that helps alleviate the state explosion 
problem in web apps by deriving a partial SFG through 
directing exploration towards areas of interest to 
achieve adequate coverage of the app’s functionalities. 
FeedEx [12] utilizes parameters to take into account 
many facets of the exploration. It supervises and directs 
the exploration at runtime using the parameters. 
Similarly, Keyjaxtest [13] explores a web app to derive 
a partial SFG by employing specific keywords that 
characterize particular app functionalities. Familiarity 
with the web app is necessary for guided techniques. 
For instance, if the user is not familiar with the required 
phrases, Keyjaxtest might not accurately explore the 
functionality of the web apps. When presented with a 
new web app, this constraint renders the guided 
exploration strategy ineffective. The fact that dynamic 
exploration approaches automatically examine new 
apps is also one of their main benefits [14]. 

Recent studies [15] on Reinforcement Learning 
(RL) [16] have demonstrated that it is capable of 
learning a policy to explore web apps. RL is a machine 
learning method that learns from positive or negative 
task rewards without a labeled training set. Therefore, 
it represents a method for dynamically constructing an 
appropriate exploration strategy based on past 
successes or failures. Even though RL has been used to 
solve the problem of exploring web apps [15], so far 
only the most basic type of RL, tabular RL, has been 
used to explore web apps. Tabular RL maintains a table 
of state-action values. Deep neural networks replaced 
tabular methods with Deep learning methods, in which 
the action-value function is learned from a neural 
network’s past good and bad attempts. When the state 
space is huge (such as when there are many events and 
states within a web app), deep RL has proven to be 
much superior to tabular RL [17], [18]. In this way, we 
say that the state space of web apps is a great place to 
use Deep RL instead of tabular RL for successful 
exploration. 

DeepEx (Deep Reinforcement Learning-based 
Exploration of Web Apps), the first Deep RL solution 
for automated web app exploration, is presented in this 
article. DeepEx uses a Deep neural network to figure 

out the best way to explore by looking at what has 
already been tried. Due to the use of a Deep neural 
network, the system is both highly scalable and capable 
of managing the complex functionalities of web apps. 
DeepEx was used to evaluate a benchmark of seven 
different web apps. In the benchmark, DeepEx’s 
performance was compared to that of the other web app 
exploration techniques like QExplore [15] and FeedEx 
[12]. The experimental findings supported the claim 
that Deep RL beats tabular RL in the exploration of web 
apps, with deepEx obtaining better code coverage with 
more navigational and structural diversity. 

The following is a summary of this paper's 
contributions: 

• The first exploration strategy built on Deep 

RL that we suggest is called DeepEx. 

• We give an empirical assessment of the 

proposed method. Our approach outperforms 

existing ones, according to the results. 
The rest of this paper is structured as follows: 

Introductions to web app exploration and Deep RL are 
provided in Section 2. Section 3 reviews related work. 
In Section 4, we will discuss our exploration strategy, 
which is based on Deep RL. The fifth section provides 
an empirical evaluation of our proposed methodology 
for seven web apps. The paper concludes in Section 6, 
which also provides ideas for additional research. 

II. BACKGROUND 

This part gives background information on web app 
exploration in order to make a model of how it works. 
In addition to this, it explains the fundamental 
principles of Deep RL, which are necessary to 
comprehend the rest of the work. 

A. Behavioral Model 

Web apps that offer better user interaction are now 
widely available [1] thanks to the development of web 
and browser technology. In order to alter the UI in 
reaction to runtime events, web apps modify the DOM 
[2]. During runtime, these incremental modifications 
lead to dynamically produced states. As a result, DOM 
that is created dynamically can serve as a representation 
of a UI state, and a state transition can be described as 
a change in DOM. To model these UI state transitions 
in a web app, the following SFG [9] is defined, where 
nodes represent the dynamic DOM states of the web 
app and edges represent the event-based transitions 
between them: 

State-flow graph SFG for a web app is a labeled 
directed graph with the notation 〈𝑟, 𝑉, 𝐸〉: 

• 𝑟 is the root node and represents the original 

state of the web app after it has been fully 

loaded into the browser. 

• 𝑉 is a collection of vertices that represent the 

states. Each 𝑣 ∈ 𝑉 represents a runtime DOM 

state in the web app. 

• 𝐸 , we refer to the set of directed, labeled 

edges between vertices as events. Each 
(𝑣1, 𝑣2)𝑒 ∈ 𝐸 indicates a change between two 

nodes 𝑣1, 𝑣2  if and only if the event 𝑒 in 𝑣1 

leads to 𝑣2. 

• SFG may contain multi-edges and be cyclic. 

Volume 16- Number 2 – 2024 (25 -33) 
 

26 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

                               2 / 9

https://journal.itrc.ac.ir/article-1-604-en.html


By creating events, such as clicking on DOM 
components, users can communicate with a web app. A 
DOM element is referred to as a clickable element if it 
has an attached event listener or if it is clickable in 
general, like element < 𝑎 > . The actions (such as 
clicking on clickables) can activate the associated event 
handler functionality and ultimately change the state of 
the web app. Therefore, by investigating event-driven 
DOM transitions in web apps, the SFG can be 
automatically derived. 

Since an SFG captures dynamic UI states and event-
based transitions between them, it is assumed to be the 
web app’s behavioral model. Event sequences in the 
SFG typically exercise a web app’s functionality. 
Therefore, the SFG has a wide variety of uses in web 
app analysis, comprehension, and testing. For instance, 
testers can automatically generate test cases by 
extracting event sequences from the SFG. Generally 
speaking, web app exploration can help with activities 
such as invariant-based testing [3], cross-browser 
compatibility testing [4], mutation testing [5], 
automated test case generation [6], model-based testing 
[7], test dependency analysis [8]. 

B. Deep RL 

A model-free RL technique called Q-learning [19] aims 
to learn a policy for any Markov decision process by 
identifying the best possible policy, 𝜋, to maximize the 
expected cumulative reward for a series of actions. Q-
learning is based on trial-and-error learning, in which 
an agent interacts with the environment and assigns 𝑄 
values, which are approximated values, to each state-
action pair. 

As depicted in Fig. 1, the agent interacts iteratively 
with the environment. Assuming 𝑆 and 𝐴 are the sets of 
all states and actions, at each iteration 𝑡 , the agent 
selects and executes an action 𝑎𝑡 ∈ 𝐴  based on the 
current state 𝑠𝑡 ∈ 𝑆. 𝑠𝑡 and 𝑎𝑡 represents the state and 
action at time 𝑡 , respectively. After performing the 
action, the agent can observe a new state 𝑠𝑡+1 ∈ 𝑆. In 
the meantime, an instant reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡)  is 
received. This is the immediate reward for doing action 
𝑎𝑡  in state 𝑠𝑡 . The agent will then use the Bellman 
equation [20] to update the 𝑄 value, as follows: 

𝑄(𝑠𝑡 , 𝑎𝑡) ←  𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 ∗ (𝑟𝑡 + 𝛾 ∗
max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))  (1) 

𝛼 is a learning rate between 0 and 1 and 𝛾 is a discount 
factor between 0 and 1 in this equation. After being 
learned, these 𝑄  values can determine the optimal 
behavior in each state by selecting the action 𝑎𝑡 =
arg max

𝑎𝑡

𝑄(𝑠𝑡 , 𝑎𝑡). 

 

Figure 1.  Deep RL overview 

Deep Q-Networks (DQN) are used to scale 
traditional Q-learning to larger state and action spaces 
[17], [18]. 𝑄(𝑠𝑡 , 𝑎𝑡) are stored and visited in a Q-table 
for traditional Q-learning. It can only manage state and 
action spaces with low dimensions. As shown in Fig. 1, 
DQN is a multi-layered neural network that outputs 𝑄 
values for each action 𝑎𝑡  in a given state 𝑠𝑡 , i.e., 
𝑄(𝑠𝑡 , 𝑎𝑡). DQN can scale more complicated state and 
action spaces because a neural network can input and 
output high-dimensional state and action spaces. In 
contrast to a Q-table, a neural network can generalize 𝑄 
values to previously unobserved states. It employs the 
following loss function [17], [18] to modify the neural 
network in order to reduce the error: 

 

𝑙𝑜𝑠𝑠 = (𝑟𝑡 +  𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))
2

(2) 

 
In other words, the neural network is trained to predict 
the value of 𝑄 as follows, given the input (𝑠𝑡 , 𝑎𝑡): 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 +  𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) (3) 

 
In a training sample, therefore, the input is (𝑠𝑡 , 𝑎𝑡) and 
the output is the corresponding 𝑄 value, which can be 

calculated as 𝑟𝑡 +  𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1). 

III. RELATED WORK 

In the research that has been done on the topic, various 
strategies for improving the efficiency of exploring web 
apps have been offered. We will briefly go through the 
current state-of-the-art solutions and how their 
shortcomings call for a new way of exploring web apps. 

The state space of web apps is automatically 
explored, and an SFG is produced using generic 
exploration algorithms like Crawljax [9], which was 
proposed by Mesbah et al. In order to thoroughly 
explore the state space of web apps, Crawljax uses 
generic exploration algorithms such as breadth-first 
search, depth-first search, or random search. Due to the 
state explosion problem [11], however, such general 
exploration algorithms cannot fully explore the state 
space of web apps in a finite amount of time. Another 
disadvantage of Crawljax is that it can become stuck in 
unimportant areas of web apps, leading to insufficient 
functionality coverage. The primary reason for this is 
that Crawljax's method lacks feedback to guide the 
exploration. 

There have been guided exploration approaches that 
employ heuristic strategies to direct the exploration of 
web apps towards areas of interest based on 
predetermined objectives. In actuality, guided 
approaches explore a web app by limiting the scope of 
exploration in order to derive an incomplete model with 
adequate functionality coverage, as opposed to a 
complete model. Milani Fard and Mesbah [12] came up 
with an exploration method called FeedEx that uses 
heuristics, such as code coverage, navigational 
diversity, and structural diversity, to lead the 
exploration. KeyjaxTest, suggested by Qi et al. [13], 
uses keywords of defined functionality to direct 
exploration towards attaining good coverage of them, 

Volume 16- Number 2 – 2024 (25 -33) 
 

27 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

                               3 / 9

https://journal.itrc.ac.ir/article-1-604-en.html


making it a keyword-guided technique for exploring the 
state space of a web app. KeyjaxTest guides the 
exploration to find states and transitions that are 
important to the defined functionalities by figuring out 
how similar the text in the states and the given 
keywords are. 

Without a prior understanding of the web app, 
guided approaches are ineffective for exploring the 
state space. For instance, FeedEx’s efficacy depends on 
the weights used to combine the parameters, which can 
differ between apps and are challenging to predict 
before exploration. Similarly, prior to exploration, 
KeyajxTest demands not only knowledge of 
probabilistic weights but also knowledge of the various 
functionalities accessible and their relevant keywords. 
To put it another way, KeyjaxTest needs the web app’s 
desired functionalities described using keywords. It is 
difficult to predict those keywords if the user is 
unfamiliar with the web app. However, one of the 
primary expectations from dynamic exploration 
approaches is that they explore new apps automatically 
[14]. 

Liu et al.’s GUIDE [14] is a guided approach that 
allows the user to provide directives (such as stopping 
the exploration of particular states) incrementally. The 
user gives GUIDE more and more instructions over 
time to explore more and more states and functionalities. 
More states are expected to be examined when more 
directives are employed. As a result, this solution needs 
the use of a human agent and manual effort, making it 
unsuitable for web apps. 

Similarly, research has investigated the use of RL 
for web app exploration. QExplore [15] proposed by 
Sherin et al. utilizes RL, allowing it to anticipate and 
develop the behavioral model incrementally while 
interacting with the web app. QExplore employs Q-
learning [19], a model-free RL method, based on 
curiosity reward to accomplish exploration. Similarly, 
WebExplor [21] by Zheng et al. is another existing 
work that is most relevant to both the RL and web 
domain since it uses RL to generate test cases 
incrementally while interacting with a web app. Both 
QExplore and WebExplor, in contrast to our study, are 
based on the most basic type of RL, tabular RL. In 
contrast, DeepEx learns the action-value function based 
on Deep RL during its interaction with the web app. To 
the best of our knowledge, DeepEx is the first Deep RL-
based approach that explore web apps and outperforms 
state-of-the-art methods in terms of effectiveness. 

IV. PROPOSED APPROACH 

This section covers DeepEx (Deep Reinforcement 
Learning-based Exploration of Web Applications), our 
proposed Deep RL-based approach to exploring web 
apps. In Fig. 2, we can see the main building blocks of 
the proposed approach, which are Browser, DOM 
Analyzer, DQN, Action Selector, Calculator, and 
Memory. 

 

 

Figure 2.  Fig. 2: Proposed approach Overview 

It is the responsibility of Browser to provide a 
common interface for communicating with the web 
app. It has access to runtime DOMs and the JavaScript 
engine. Additionally, Browser executes the actions in 
web app states. DOM Analyzer parses the DOM tree 
and extracts the state and actions associated with it. The 
current state and actions are converted into an input by 
DOM Analyzer, which is subsequently sent into the 
DQN. DQN receives the web app’s state and its actions. 
DQN uses a model of a neural network to figure out 𝑄 
values for actions which it then sends to Action 
Selector. The next action to execute is selected by 
Action Selector based on an Epsilon-Greedy policy 
[16]. The browser executes the selected action. The web 
app enters a new state. DOM Analyzer monitors 
performed actions and resulted states to construct the 
SFG incrementally as an output. Using equation (3), 
Calculator computes the transition reward and obtains 
the 𝑄 value. The transition is stored in Memory along 
with the state, action, and 𝑄 value. DQN learns from a 
sampling batch of transitions in Memory to update its 
weights. DQN would learn poorly if it merely used 
sequential samples of experience from the environment 
because of their correlation [17], [18]. This correlation 
is broken by sampling Memory at random. 

 

A. Problem Formulation 

To use Deep RL, we must first convert the web app 
exploration problem to the conventional mathematical 
formalization of RL. The web app exploration problem 
can be formalized formally as a Markov decision 
process, which can be demonstrated by a 4-tuple, 
〈𝑆, 𝐴, 𝑃, 𝑅〉. These are described below. 

 

 

Volume 16- Number 2 – 2024 (25 -33) 
 

28 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

                               4 / 9

https://journal.itrc.ac.ir/article-1-604-en.html


1) 𝑺: States 
Our approach is black-box because it does not access 
the App Under Exploration (AUE) source code. It only 
uses the UI of AUE. DeepEx extracts the DOM from 
the web app’s current UI. DeepEx analyzes the DOM 
to find clickable elements in the current state. State 𝑠𝑡 
is represented by (𝑐1, 𝑐2, … , 𝑐𝑛) , where 𝑐𝑖  are the 

clickable elements in 𝑠𝑡 . Each 𝑐𝑖  is an index that 

indicates the element’s position in the DOM tree’s pre-
order traversal. 

Fig. 3 illustrates the partial DOM trees of two pages, 
DOM 1 and DOM 2, as an example. They are both 
made up of elements 〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑝〉 and〈𝑎〉 . The 
elements that can be clicked (only elements 〈𝑎〉) are 
highlighted. 

DOM 1’s pre-order traversal 
is (〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑎〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑝〉) , and DOM 
2’s is (〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑝〉, 〈𝑝〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑎〉) . For 
simplicity, we replace elements that can be clicked with 
1 and those that cannot with 0. They are transformed 
into (0, 0, 1, 1, 0, 1, 0)  and (0, 0, 0, 0, 0, 1, 1) . To 
acquire 𝑠1 and 𝑠2, the respective states of DOM 1 and 
DOM 2, we must take into account the positions of 
clickable elements, i.e., the positions of number 1. As a 
result, s1 = (2,3,5) and s2 = (5,6). 

2) 𝑨: Actions 
Clickable elements indicate actions. In other words, 
clickables and click events in web apps are formulated 
as actions in the Markov decision process. Actions are 
represented by the index of the clickables in the relevant 
state, which is similar to states. In 𝑠1, for example, there 
are three actions marked by 𝐴1 = (2, 3, 5). In the same 
way, 𝐴2 = (5, 6) shows that 𝑠2 has two actions. In this 
paper, we don’t make a difference between actions and 
events, because they are the same. In web apps, 
clickables suffice to complete the majority of tasks. 

 

3) 𝑷: Transition Function 
The transition function indicates the state the web app 
will enter once an event occurs. We have no control 
over it; the AUE decides what it is. 

 

 

 

Figure 3.  Partial DOM trees 

4) 𝑹: Reward 
When DeepEx executes an event, it receives a reward. 
We present a mechanism for determining the reward 
that complements our exploration approach. The 
reward function gives a bigger reward to actions that 
change the state a lot. This is a heuristic way to 
understand which actions lead to new functionalities. 
The intuition is to provide greater rewards for actions 
that can result in multiple new actions. In fact, a state 
with more new clickables is more likely to result in 
additional states and functionalities. The reward 
function is defined by the following equation: 

 

𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) =
|𝑠𝑡+1−𝑠𝑡|

|𝑠𝑡+1|
  (4) 

 
The reward function, given two states, 𝑠𝑡 and 𝑠𝑡+1, 

estimates the degree of change from 𝑠𝑡  to 𝑠𝑡+1  by 
comparing and detecting the number of clickables in 
𝑠𝑡+1 that were not present in 𝑠𝑡, which is described as 

|𝑠𝑡+1 − 𝑠𝑡| . The ratio 
|𝑠𝑡+1−𝑠𝑡|

|𝑠𝑡+1|
, where |𝑠𝑡+1|  is the 

number of clickables in 𝑠𝑡+1 , defines the relative 
change. This reward function takes into account the 
actions that are introduced in 𝑠𝑡+1 but are absent in 𝑠𝑡. 

As an illustration, given s1  = (2,3,5)  and s2 =

(5,6) , as previously defined, 
|(6)|

|(5,6)|
=

1

2
= 0.5  is the 

reward of the transition from 𝑠1  to 𝑠2 . In fact, the 
clickable (6) is not in 𝑠1, but in 𝑠2, and there are only 
two clickables in 𝑠2: (5, 6). 

B. Algorithm 

Algorithm 1 details the DeepEx approach for Deep RL-
based exploration. It takes the AUE, the exploration 
time budget, and the maximum number of actions per 
episode as input. In fact, we need to turn the exploration 
problem into an RL task that is broken up into several 
episodes. A series of actions is referred to as an episode. 
In other words, each episode consists of multiple steps 
or iterations in which an action is conducted. DeepEx 
outputs state flow graph 𝑆𝐹𝐺 . A memory is used to 
store samples from previous iterations, each of which 
comprises the state, action, and related 𝑄  value. 
DeepEx begins by initializing memory 𝑀 (line 1) and 
the state flow graph 𝑆𝐹𝐺  (line 2). Now, exploration 
starts and goes on until the time limit is met (lines 3–
20). DeepEx restarts the web app and navigates to the 
homepage (line 4). Line 5 returns the AUE’s initial 
state. Line 6 adds the initial sate to the 𝑆𝐹𝐺. In each 
episode, we limit the number of steps that can be taken 
(lines 7–20). The default setting for the episode length 
in DeepEx is 25, but it can be changed. Each episode 
starts with an action in the initial state. 

 

Volume 16- Number 2 – 2024 (25 -33) 
 

29 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

                               5 / 9

https://journal.itrc.ac.ir/article-1-604-en.html


 
 

Epsilon-Greedy is the policy that DeepEx employs 
(lines 8–11). It decides based on a predefined threshold 
𝜀  in the interval [0, 1]  to determine whether it will 
explore new actions or exploit its existing knowledge. 
In fact, it chooses the action with the highest 𝑄 value 
based on the DQN (exploitation, Line 11) with a chance 
of 1 − 𝜀 and a random action (exploration, Line 9) with 
a chance of 𝜀. Randomness is required for an agent to 
discover the optimal strategy [22]. We want the DeepEx 
to explore as various states as possible at the start of the 
testing in order to explore new actions more; thus, a 
high value of 𝜀  should be used. DeepEx is therefore 
expected to follow the 𝑄 values in order to exploit its 
knowledge, so a smaller value of 𝜀  is expected. By 
default, DeepEx starts with 1 to enable maximum 
exploration, then decreases its value uniformly during 
the first 30 episodes until a final minimum value of 0.2 
transforming its behavior towards exploitation. 

DeepEx executes the selected action (line 12). In 
fact, DeepEx generates the 𝑆𝐹𝐺  by executing the 
appropriate action in the current state of AUE. DeepEx 
retrieves the new state (line 13) and computes the 
reward (line 14) using equation (4) based on 𝑠𝑡, 𝑠𝑡+1. 
DeepEx uses equation (3) to calculate the 𝑄 value of 
action 𝑎𝑡 in 𝑠𝑡 with parameters 𝑠𝑡, 𝑠𝑡+1, 𝑎𝑡, and 𝑟𝑡 (line 
15). The discount factor, 𝛾, balances how important the 
immediate reward is compared to future actions, and a 
number of 0.9 maximizes the reward earned over the 
whole episode, not just the immediate reward. 

DeepEx employs a set of random training samples, 
including both the current sample and historical 
samples (line 16), to train the neural network (line 17). 
Each sample takes (𝑠𝑡 , 𝑎𝑡) as input and has 𝑄(𝑠𝑡 , 𝑎𝑡) as 
output. The current transition is saved in memory 𝑀, 
which stores historical samples from previous iterations 
(line 18). The 𝑆𝐹𝐺  is updated by the new transition 
(𝑠𝑡 , 𝑠𝑡+1)𝑎𝑡

∈ 𝐸  (line 19). The prior state is then 

updated to continue exploration (line 20). 

V. EVALUATION 

In this part, we show experiments to test how well our 
Deep RL method for exploring web apps works. In 
other words, the effectiveness of DeepEx in the 
exploration of web apps in comparison to other 

methods that are considered to be state-of-the-art in web 
app exploration is our primary research question. 

A. Metrics 

Code coverage, navigational diversity, and structural 
diversity are three metrics that we use to evaluate the 
success of our method. According to [12], [13], [15], it 
is thought that these metrics represent the features that 
an SFG ought to have in order to cover many parts of 
the behavior of a web app in an efficient manner. 

1) Code coverage 
When evaluating the effectiveness of exploration, code 
coverage is a useful metric to consider. One goal of 
exploring web apps is to run enough code to adequately 
cover the app’s functionalities. Code coverage is a 
metric that determines the proportion of an app’s lines 
of code that are successfully run while the app is being 
explored. Code coverage is also a reliable indicator of 
test robustness [23]. Similar to [12], [13], [15], each 
web app was instrumented to acquire code coverage. 

2) Navigational diversity 
A web app's navigation structure enables users to move 
around it in different ways. Each navigational path 
offers a varying level of functionality. A behavioral 
model should adequately encompass the web app's 
navigational structure. The model should cover web 
app navigational branches to do that. The position of the 
leaf nodes in the graph is an indication of the diversity 
of its event paths (that is, paths from the index node to 
the leaves). In order to measure the navigational 
diversity of an SFG, we measure the average pair-wise 
navigational diversity of leaf nodes (states without any 
outgoing edges). This is similar to [12], [13], [15]. 
Common and uncommon events in SFG routes 
determine their diversity. 

3) Structural diversity 
A webpage’s DOM structure serves as the primary 
interface for user interaction. Different DOMs offer 
varying levels of functionality. Because of this, 
directing the exploration toward a variety of DOM 
states can lead to improved coverage of the web app. In 
order to accurately represent this structural diversity, an 
SFG should include the various DOM structures of the 
web app. In the same way as [12], [13], [15], we use the 
average pair-wise structural diversity of DOM states in 
the derived SFG to measure the structural diversity. The 
normalized DOM tree edit distance can be used to 
define state DOM diversity. Similar to [12], [13], [15], 
we employ the tree edit distance between two ordered 
labeled trees, which was proposed [24] and 
implemented [25] as the minimum cost of a series of 
edit operations that converts one tree into another. The 
operations consist of deleting a node and connecting its 
children to the parent, inserting a node between a node 
and its children, and renaming a node. 

B. Setup 

DeepEx was implemented in Python on top of 
QExplore [15] to assess its effectiveness. QExplore 
supports the RL approach. We changed the RL strategy 
by replacing it with our Deep RL algorithm. To interact 
with the web app, Selenium [26] was utilized. The DQN 
was built and executed using Keras [27]. DQN uses a 
3-layer fully connected neural network, and Adam to 

Volume 16- Number 2 – 2024 (25 -33) 
 

30 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

                               6 / 9

https://journal.itrc.ac.ir/article-1-604-en.html


optimize the model with a learning rate of 0.001. Two 
state-of-the-art strategies were chosen for a comparison 
study. These include QExplore [15] and FeedEx [12]. It 
is worth noting that WebExplor [21] focuses on 
generating test cases and uses tabular RL as a 
foundation. Our research focuses on web app 
exploration using Deep RL, which has never been done 
previously. Despite having some similarities with 
QExplore, WebExplor is not a behavioral model 
generator. So, it is not possible to compare DeepEx 
directly to WebExplor. Extending our deep RL 
technique to develop test cases for web apps and 
comparing its effectiveness with that of WebExplor is 
an interesting piece of future work that can be done. 

Similar to [15], we utilize an existing open-source 
data generator for elements requiring input data (e.g., 
text fields) based on the context of the elements. In fact, 
we employ Mocker Data Generator [28], which offers 
input data for web app input fields. DeepEx also gives 
you the option to manually enter data for some inputs, 
such as login and password. 

We chose seven open-source web apps to evaluate. 
These web apps perform various tasks and belong to 
several categories. A web app called Voting [29] 
enables communities and groups to vote online. E-
commerce Site [30] is a marketplace where users may 
purchase and sell products to one another. A web app 
called Hostel [31] handles important operations 
connected to running a hostel. NodeBB [32] is an online 
forum. Keystone [33] is a content management system. 
TimeOff [34] is an employee absence management 
system. Petclinic [35] is a web app used to manage a 
veterinary clinic. These web apps were selected for 
their varying levels of complexity and user interaction 
patterns, providing a robust testbed for our Deep RL 
testing approach. Each web app features distinct 
navigational structures and user interfaces. By choosing 
this web apps, we aimed to demonstrate the versatility 
and adaptability of our approach across different web 
app architectures. The varied nature of these web apps 
significantly contributed to assessing the approach's 
performance. 

Each approach was tested on each subject web app. 
We gave each strategy the same 100-minute time limit. 
In addition, we repeated each experiment three times 
and calculated the average of all the results to confirm 
the general trend. The experiments were conducted on 
a PC running Windows 10, with a processor of an Intel 
Core i7-13700K 3.40 GHz and memory RAM 31.7 GB. 
It is noteworthy that the required parameters of the 
approaches QExplore and FeedEx were set according to 
the recommended defaults in their papers. 

C. Results 

The effectiveness of DeepEx, QExplore, and FeedEx in 
terms of code coverage, navigational diversity, and 
structural diversity are compared in Table 1. The table 
details the average values obtained from three iterations 
of each of the three methodologies within the time 
constraint of ninety minutes. In this case, the highest 
values are bold. 

It is clear from looking at the code coverage column 
that DeepEx outperforms both QExplore and FeedEx. 
It shows an improvement of 17% and 43% when 

compared to them, respectively. DeepEx obtained 
greater code coverage than the other two approaches in 
each of the web apps under consideration. 

The results show that DeepEx outperformed 
QExplore and FeedEx in terms of navigational diversity 
across all of the investigated web apps. DeepEx 
improved navigational diversity by 16% compared to 
QExplore. Similarly, DeepEx improved navigational 
diversity by 45% when compared to FeedEx. 

According to the structural diversity column, it is 
clear that the SFG obtained through DeepEx has more 
structural diversity in all subject web apps than those 
received through QExplore and FeedEx. DeepEx 
scored better than QExplore and FeedEx when it came 
to capturing structural diversity in its SFG, with an 
improvement of 19% and 49%, respectively. 

When comparing DeepEx’s improvements in code 
coverage, navigational diversity, and structural 
diversity to those of RL and heuristic-based approaches, 
it is clear that the Deep RL-based methodology is more 
effective in the exploration of web apps. In other words, 
one of the primary reasons for the improved results 
obtained by DeepEx is that it systematically explores 
the web app by directing exploration toward more 
effective actions and gaining access to various states 
based on the learning capabilities of Deep RL. 

Web apps, known for their sophistication and 
diverse user interactions, often pose challenges in 
exploration. In our investigation of the exploration 
capabilities of DeepEx and two alternative approaches, 
we delved into the complexities arising from intricate 
user interactions. Notably, web app exploration 
involves identifying patterns—specific sequences of 
actions required to transition between states. This adds 
a layer of difficulty as certain functionalities are only 
revealed through precise sequences of actions. 

For instance, in the Petclinic subject web app , a 
crucial functionality, such as “Adding new visit”, 
necessitates a specific sequence: clicking “Find 
Owners”, typing the owner’s name, clicking “Find 
Owner”, clicking “Add New Visit”, filling details, and 
clicking “Add Visit”. Interestingly, none of the other 
approaches could detect this functionality. DeepEx, 
leveraging Deep RL guidance, successfully identified 
such action sequences not only in Petclinic but also in 
other web apps. It's crucial to note that any interruption 
in the process results in redirection to another page, 
impacting exploration efficacy. Deep RL's ability to 
efficiently execute these sequences sets it apart. 

Our findings underscore the superiority of the Deep 
RL algorithm over RL and heuristic-based approaches. 
DeepEx, powered by Deep RL, outperformed other 
methods in replicating human behaviors. This was 
particularly evident in generating action sequences 
without distractions from prior states or ineffective 
actions in high-dimensional spaces. The learning 
capabilities of the DQN used in Deep RL facilitated the 
efficient production of these behaviors—a feat more 
challenging for the RL algorithm with its limited 
adaptation capabilities. Our paper shows Deep RL's 
effectiveness in learning exploration strategies 
contributes to its superior performance in uncovering 
intricate functionalities within web apps. 

Volume 16- Number 2 – 2024 (25 -33) 
 

31 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

                               7 / 9

https://journal.itrc.ac.ir/article-1-604-en.html


TABLE I.  EFFECTIVENESS RESULTS FOR COMPARISON 

App Code coverage Navigational diversity Structural diversity 

DeepEx QExplore FeedEx DeepEx QExplore FeedEx DeepEx QExplore FeedEx 

Voting 76.47 63.50 49.14 0.86 0.74 0.53 0.65 0.53 0.42 
E-commerce Site 86.37 74.27 66.40 0.84 0.71 0.59 0.70 0.62 0.47 
Hostel 72.87 60.39 49.41 0.79 0.68 0.56 0.73 0.64 0.50 
NodeBB 66.70 54.65 43.67 0.72 0.63 0.49 0.59 0.49 0.41 
Keystone 56.62 48.59 40.55 0.63 0.61 0.53 0.68 0.57 0.47 
TimeOff 78.62 69.59 59.55 0.71 0.59 0.51 0.58 0.47 0.39 
Petclinic 64.67 56.54 42.52 0.66 0.54 0.39 0.53 0.43 0.34 
Average 71.76 61.08 50.18 0.74 0.64 0.51 0.64 0.54 0.43 

VI. CONCLUSIONS 

In this paper, we have proposed DeepEx, an approach 
based on Deep RL for the exploration of web apps. A 
Deep Q-network agent is employed in this approach to 
explore and model the web app through trial and error. 
Instead of relying on heuristic principles to find the 
appropriate action to discover new states, DeepEx can 
learn how to explore web apps on its own. We have 
tested DeepEx on seven publicly available web apps 
and found that it achieves better results than the current 
methods for web app exploration in terms of code 
coverage, navigational diversity, and structural 
diversity. 

In future work, we plan to extend the testing of our 
methodology to a wider array of web apps. It is 
important to note that the use of apps from various 
categories, as well as the consistency of the results in 
this study, indicate that our Deep RL-based technique 
has some potential usefulness. Despite this, expanding 
our subject web apps will allow for a more 
comprehensive evaluation to further validate the 
effectiveness of DeepEx. 

It is crucial to remember that our basic and intuitive 
definition of states and reward function produced 
encouraging results, indicating its usefulness. However, 
we aim to enhance DeepEx by refining the state space 
and exploring different reward function strategies 
within Deep Q-networks. These enhancements are 
directed towards developing more complex state 
definitions and reward functions, particularly to 
improve adaptability to a more diverse range of web 
apps. 

Furthermore, we will investigate the efficacy of 
testing and analyzing methods for web apps using the 
behavioral model created by DeepEx. This includes 
examining the efficacy of test suites for web app 
regression testing derived from the corresponding state 
flow graph. 

REFERENCES 

 
[1] “January 2023 Web Server Survey | Netcraft News.” 

https://news.netcraft.com/archives/2023/01/27/january-
2023-web-server-survey.html (accessed Apr. 05, 2023). 

[2] “What is the Document Object Model?” 
https://www.w3.org/TR/WD-DOM/introduction.html 
(accessed Jan. 05, 2023). 

[3] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-
Based Automatic Testing of Modern Web Applications,” 
IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 35–53, Jan. 
2012, doi: 10.1109/TSE.2011.28. 

[4] A. Mesbah and M. R. Prasad, “Automated Cross-Browser 
Compatibility Testing,” in Proceedings of the 33rd 
International Conference on Software Engineering, 2011, 
pp. 561–570, doi: 10.1145/1985793.1985870. 

[5] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Guided 
Mutation Testing for JavaScript Web Applications,” IEEE 
Trans. Softw. Eng., vol. 41, no. 5, pp. 429–444, May 2015, 
doi: 10.1109/TSE.2014.2371458. 

[6] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, 
“Leveraging Existing Tests in Automated Test Generation 
for Web Applications,” in Proceedings of the 29th 
ACM/IEEE International Conference on Automated 
Software Engineering, 2014, pp. 67–78, doi: 
10.1145/2642937.2642991. 

[7] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, 
“Diversity-based Web Test Generation,” in Proceedings of 
the 2019 27th ACM Joint Meeting on European Software 
Engineering Conference and Symposium on the 
Foundations of Software Engineering, 2019, pp. 142–153, 
doi: 10.1145/3338906.3338970. 

[8] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, 
“Dependency-Aware Web Test Generation,” in 2020 IEEE 
13th International Conference on Software Testing, 
Validation and Verification (ICST), Oct. 2020, pp. 175–
185, doi: 10.1109/ICST46399.2020.00027. 

[9] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling 
Ajax-Based Web Applications through Dynamic Analysis 
of User Interface State Changes,” ACM Trans. Web, vol. 
6, no. 1, Mar. 2012, doi: 10.1145/2109205.2109208. 

[10] M. Mirzaaghaei and A. Mesbah, “DOM-Based Test 
Adequacy Criteria for Web Applications,” in Proceedings 
of the 2014 International Symposium on Software Testing 
and Analysis, 2014, pp. 71–81, doi: 
10.1145/2610384.2610406. 

[11] A. van Deursen, A. Mesbah, and A. Nederlof, “Crawl-
based analysis of web applications: Prospects and 
challenges,” Sci. Comput. Program., vol. 97, pp. 173–180, 
2015, doi: https://doi.org/10.1016/j.scico.2014.09.005. 

[12] A. M. Fard and A. Mesbah, “Feedback-directed 
exploration of web applications to derive test models,” in 
2013 IEEE 24th International Symposium on Software 
Reliability Engineering (ISSRE), Nov. 2013, pp. 278–287, 
doi: 10.1109/ISSRE.2013.6698880. 

[13] X.-F. Qi, Y.-L. Hua, P. Wang, and Z.-Y. Wang, 
“Leveraging keyword-guided exploration to build test 
models for web applications,” Inf. Softw. Technol., vol. 
111, pp. 110–119, 2019, doi: 
https://doi.org/10.1016/j.infsof.2019.03.016. 

[14] C.-H. Liu, W.-K. Chen, and C.-C. Sun, “GUIDE: an 
interactive and incremental approach for crawling Web 
applications,” J. Supercomput., Mar. 2018, doi: 
10.1007/s11227-018-2335-4. 

[15] S. Sherin, A. Muqeet, M. U. Khan, and M. Z. Iqbal, 
“QExplore: An exploration strategy for dynamic web 
applications using guided search,” J. Syst. Softw., p. 
111512, 2022, doi: 
https://doi.org/10.1016/j.jss.2022.111512. 

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An 
Introduction. Cambridge, MA, USA: A Bradford Book, 
2018. 

Volume 16- Number 2 – 2024 (25 -33) 
 

32 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

                               8 / 9

https://journal.itrc.ac.ir/article-1-604-en.html


[17] V. Mnih et al., “Playing Atari with Deep Reinforcement 
Learning,” CoRR, vol. abs/1312.5, 2013, [Online]. 
Available: http://arxiv.org/abs/1312.5602. 

[18] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. 
A. Bharath, “Deep Reinforcement Learning: A Brief 
Survey,” IEEE Signal Process. Mag., vol. 34, no. 6, pp. 
26–38, Nov. 2017, doi: 10.1109/MSP.2017.2743240. 

[19] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. 
Learn., vol. 8, no. 3, pp. 279–292, 1992, doi: 
10.1007/BF00992698. 

[20] R. Bellman, “On the Theory of Dynamic Programming,” 
Proc. Natl. Acad. Sci., vol. 38, no. 8, pp. 716–719, 1952, 
doi: 10.1073/pnas.38.8.716. 

[21] Y. Zheng et al., “Automatic Web Testing Using Curiosity-
Driven Reinforcement Learning,” in Proceedings of the 
43rd International Conference on Software Engineering, 
2021, pp. 423–435, doi: 10.1109/ICSE43902.2021.00048. 

[22] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, 
“Comparing exploration strategies for Q-learning in 
random stochastic mazes,” in 2016 IEEE Symposium 
Series on Computational Intelligence (SSCI), Dec. 2016, 
pp. 1–8, doi: 10.1109/SSCI.2016.7849366. 

[23] R. Gopinath, C. Jensen, and A. Groce, “Code Coverage for 
Suite Evaluation by Developers,” in Proceedings of the 
36th International Conference on Software Engineering, 
2014, pp. 72–82, doi: 10.1145/2568225.2568278. 

[24] K.-C. Tai, “The Tree-to-Tree Correction Problem,” J. 
ACM, vol. 26, no. 3, pp. 422–433, Jul. 1979, doi: 
10.1145/322139.322143. 

[25] M. Pawlik and N. Augsten, “RTED: A Robust Algorithm 
for the Tree Edit Distance,” Proc. VLDB Endow., vol. 5, 
no. 4, pp. 334–345, Dec. 2011, doi: 
10.14778/2095686.2095692. 

[26] “Selenium.” https://www.selenium.dev/ (accessed Jan. 11, 
2022). 

[27] “Keras: Deep Learning for humans.” https://keras.io/ 
(accessed Feb. 28, 2022). 

[28] “mocker-data-generator: A simplified way to generate 
masive mock data based on a schema.” 
https://github.com/danibram/mocker-data-generator 
(accessed Aug. 12, 2022). 

[29] “Voting System.” https://code-projects.org/voting-system-
in-php-with-source-code/ (accessed Dec. 11, 2022). 

[30] “E-commerce Site.” https://code-projects.org/e-
commerce-site-in-php-with-source-code/ (accessed Nov. 
15, 2022). 

[31] “Hostel Management System.” https://code-
projects.org/hostel-management-site-using-php-source-
code/ (accessed Oct. 14, 2022). 

[32] “NodeBB: Node.js based forum software built for the 
modern web.” https://github.com/NodeBB/NodeBB 
(accessed Jul. 14, 2022). 

[33] “keystone: The most powerful headless CMS.” 
https://github.com/keystonejs/keystone (accessed Jun. 14, 
2022). 

[34] “timeoff: Simple yet powerful absence management 
software.” https://github.com/timeoff-
management/timeoff-management-application (accessed 
Apr. 16, 2022). 

[35] “petclinic: Angular version of the Spring Petclinic 
Application.” https://github.com/spring-petclinic/spring-
petclinic-angular (accessed May 14, 2022). 

 

 

Mohammadreza Abbasnezhad 

obtained his B.Sc. in Software 

Engineering from Vali-e-Asr 

University of Rafsanjan in 2014 

and his M.Sc. in Software 

Engineering from Yazd University 

in 2017. He is currently pursuing 

his Ph.D. degree in Software 

Engineering at Yazd University. His research interests 

include AI-driven Software Engineering, Software 

Testing and Analysis. 
 

Amir Jahangard-Rafsanjani 

received his B.Sc. degree in 

Software Engineering from Shahid 

Beheshti University, Tehran, Iran, 

in 2003, and his M.Sc. degree in 

Software Engineering from Sharif 

University of Technology, Tehran, 

Iran, in 2005. He also received his 

Ph.D. degree in Software Engineering from Sharif 

University of Technology in 2014. He is currently an 

Assistant Professor in the Department of Computer 

Engineering at Yazd University. His research interests 

include Database, Data and Text Mining, and Software 

Testing. 

 
 

Amin Milani Fard recieved his 

Ph.D. degree in Software 

Engineering from the University of 

British Columbia, Canada, in 2017, 

and his M.Sc. degree in Computer 

Science from Simon Fraser 

University in 2010. Additionally, 

he received his B.Sc. degree in 

Computer Engineering from Ferdowsi University of 

Mashhad, Iran, in 2008. Currently, he serves as an 

Assistant Professor of Computer Science at the New 

York Institute of Technology's Vancouver campus in 

Canada and is a visiting faculty member in 

Management Information Systems at Simon Fraser 

University, Canada. His research focuses on Software 

Engineering and Analysis, Data Security and Privacy, 

Artificial Intelligence and Machine Learning. 
 

Volume 16- Number 2 – 2024 (25 -33) 
 

33 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-1

0-
31

 ]
 

Powered by TCPDF (www.tcpdf.org)

                               9 / 9

https://journal.itrc.ac.ir/article-1-604-en.html
http://www.tcpdf.org

